
 T e c h f i n d e r P a g e 1 | 26

How to Build a Portfolio
That Actually Gets You

Interviews

 T e c h f i n d e r P a g e 2 | 26

Table of contents

INTRODUCTION : WHY YOUR PORTFOLIO MIGHT BE INVISIBLE .. 3

THE ANATOMY OF A HIGH-IMPACT DEV PORTFOLIO .. 4

PORTFOLIO KILLERS, COMMON MISTAKES THAT TANK YOUR CREDIBILITY 6

WHAT TO SHOW INSTEAD, PROJECTS THAT SIGNAL “HIRE ME” .. 9

TURN ANY PROJECT INTO A STANDOUT PORTFOLIO PIECE ... 12

HOW TO FORMAT A GITHUB REPO LIKE A PRO (WITH ZERO CLUTTER) ... 15

CASE STUDIES, DEVS WHO NAILED IT .. 18

THE PORTFOLIO THAT GETS THE CALLBACK ... 21

SELLING YOURSELF IS A SKILL, LEARN IT LIKE ONE .. 25

SOURCES & REFERENCES .. 26

 T e c h f i n d e r P a g e 3 | 26

Introduction : Why Your Portfolio Might Be Invisible
Let’s be honest : most developers know they should have a portfolio, but few know how to
make it actually work for them. You’ve probably built some solid projects, pushed them to
GitHub, maybe even linked them on a personal site or resume. But the response ? Crickets. No
callbacks, no interviews, no signal that it’s helping.

That’s not because you’re not good enough.
It’s because most dev portfolios are built without understanding how recruiters and hiring
managers think.

Recruiters don’t read code, they scan for signals.

When someone lands on your project or GitHub, they decide within 3 to 5 seconds whether it’s
worth diving deeper. They’re not reading your JavaScript line-by-line. They’re asking :

• Does this person solve real problems ?

• Can they communicate what they did and why ?

• Does their work show clarity, intent, and growth ?

If your portfolio doesn’t quickly answer those questions, it doesn’t matter how technically
strong your code is, it won’t convert.

The truth : your portfolio isn’t about you, it’s about what others see
in you.
The goal of this guide is to help you rethink your portfolio as a strategic tool, not just a code
dump. We’ll break down :

• What hiring teams actually care about when reviewing dev work

• Why certain projects work better than others, and how to level yours up

• How to tell the story of your projects with clarity and confidence

• Where and how to share your work so it gets seen

With real case studies, practical advice, and a few hard truths, this guide will help you stop
guessing and start standing out.

Because the best portfolio isn’t the one with the most projects, it’s the one that gets you in the
room.

 T e c h f i n d e r P a g e 4 | 26

The Anatomy of a High-Impact Dev Portfolio
Before you start tweaking your portfolio, you got to understand what makes a project stand out
in the eyes of recruiters and hiring managers. A strong portfolio isn’t just a bunch of code,it’s a
story, a proof of your skills, and a signal that you can solve real problems.

Here’s the breakdown :

What Makes a Project “Interview-Worthy” ?
Not every side project deserves to be in your portfolio. Focus on projects that :

• Solve a real problem or simulate one : It doesn’t have to be a billion-dollar app, but the
purpose should be clear and relatable.

• Showcase skills relevant to your target role : If you’re applying for front-end roles,
highlight UI/UX and responsive design ; for backend roles, focus on APIs, databases,
and architecture.

• Demonstrate growth : Projects where you added features, refactored code, or overcame
challenges show you can evolve.

• Have clean, readable code : No spaghetti, no random hacks. Maintain good structure
and documentation.

The Three Core Elements of a Strong Portfolio Project
Every project you showcase should clearly communicate these three things :

Element What It Means Why It Matters
Code

Quality
Well-structured, clean,

maintainable, and tested code
Shows you write

professional, scalable code
Project
Story

Problem tackled, your approach,
challenges, results

Tells the interviewer why
your project matters

Presentation
README, screenshots, live demo,

installation steps
Makes it easy and inviting

for others to explore

Where Should Your Portfolio Live ?
Your portfolio is more than just GitHub repos. Think of it as a mini brand for your dev self.

• GitHub, The core hosting platform. Make sure repos are clean, well-organized, and
public.

 T e c h f i n d e r P a g e 5 | 26

• Personal website or portfolio site, Central place to showcase projects, link to GitHub,
and tell your story.

• LinkedIn, Use the “Featured” section to highlight standout projects with links and
descriptions.

• Blog or Dev.to posts, Optional but powerful : write short case studies explaining your
projects and lessons learned.

The 3-Second Rule : First Impressions Count
Studies and recruiter anecdotes agree : hiring managers decide within seconds if they want to
dig into your work or move on. Your portfolio needs to grab attention fast.

How to do that ?

• A clear, concise project title (skip generic “To-Do App”)

• One-liner describing the problem and your role

• Screenshot or GIF showing the UI or key feature

• Clean and organized repo with a well-written README

Quick Recap :
• Pick projects that show relevant, real-world problem solving

• Highlight code quality, your project story, and presentation

• Use multiple platforms to showcase your work strategically

• Design for that 3-second recruiter scan, make it obvious why your project is worth their
time

 T e c h f i n d e r P a g e 6 | 26

Portfolio Killers, Common Mistakes That Tank Your
Credibility
A solid portfolio can land you interviews, but a poorly presented one can quietly eliminate you
before you even get a shot. These mistakes are everywhere in junior and even mid-level dev
portfolios, and they all send the wrong signal.

Let’s break them down :

Unfinished or Inactive Projects
Problem : Repos with “Coming soon,” features that don’t work, or long-abandoned commits.
Why it kills you : Looks like you can’t follow through or ship real work. It creates doubt around
your focus and attention to detail.

Fix : Only showcase finished (or clearly active) projects. Hide or archive half-done stuff from
your main portfolio.

No README (or a Bad One)
Problem : Empty README files or ones that just say “my project.”
Why it kills you : Hiring managers don’t have time to figure it out themselves. If there’s no
explanation, they’ll just leave.

Fix : Add a clear README with :

• What the app does

• Why you built it

• How to run it

• Key features or screenshots

• What you learned

 T e c h f i n d e r P a g e 7 | 26

Forked Projects Without Original Work
Problem : Using a popular GitHub repo and adding nothing new.
Why it kills you : It doesn’t show initiative, creativity, or ownership. They’re evaluating your skills,
not someone else’s.

Fix : If you fork something, customize it. Add your own logic, new features, or change the use
case, then clearly explain what you did.

Generic or Overused Projects (e.g., Yet Another To-Do App)
Problem : You built a basic CRUD app that 1,000 other people built the exact same way.
Why it kills you : Recruiters have seen it before, and it doesn’t help them differentiate you.

Fix : Give it a twist. Add user auth, offline mode, keyboard shortcuts, or make it solve a niche
problem (like a “to-do app for chefs” with recipe timers). Show thinking, not just copying.

No Live Demo or Visuals
Problem : The project looks like dead code with no way to see it in action.
Why it kills you : Nobody wants to clone, install, and run your project just to know what it does.

Fix :

• Host a demo on Vercel, Netlify, Heroku, etc.

• Add a screen recording or GIF to your README

• Include screenshots if live hosting isn’t possible

Weak or Confusing File Structure
Problem : Everything is jammed into one folder, filenames are vague, no organization.
Why it kills you : Shows lack of real-world habits and makes it harder to review your work.

Fix : Use standard project structures (like MVC or Next.js’s conventions). Group components,
name things clearly, and keep the file tree clean.

 T e c h f i n d e r P a g e 8 | 26

Bad Naming, Spelling, or Formatting
Problem : Projects titled “test1” or “my-cool-app-final-final,” or code littered with typos.
Why it kills you : Screams “sloppy,” and hiring teams don’t want to gamble on someone they
can’t trust to double-check their work.

Fix : Treat your portfolio like real product work, clean names, meaningful variable names, proper
spelling, consistent formatting.

Quick Audit Table
Mistake Impact Quick Fix

No README No one understands your
work

Add clear purpose, install steps, and
screenshots

Unfinished repo Signals you can’t finish
projects

Archive or complete before sharing

Generic to-do app Won’t stand out at all Add custom features or real-user context

No live demo Nobody wants to clone +
run

Deploy or include screen recording

Forked with no
edits

Shows zero originality Customize and explain what’s yours

Bottom Line :
A weak portfolio doesn’t mean you’re a bad dev, it just means you’re not showing your value
clearly. Every project you share is a reflection of how you’ll work on the job.

The fix ? Start thinking like a product dev : ship clean, present clearly, and remove anything that
doesn’t serve the story you want to tell.

 T e c h f i n d e r P a g e 9 | 26

What to Show Instead - Projects That Signal “Hire
Me”
Now that we’ve cleared out what doesn’t work, let’s break down what actually makes a project
portfolio-ready. It’s not about building something massive, it’s about intentionality, clarity, and
relevance.

Real-World > Tutorial Vibes
You don’t need to reinvent the wheel, but your project should look like it came from a real-
world problem, not a YouTube clone.

Good project signals :

• It solves a user-facing problem (even a niche one)

• It mimics production constraints (auth, API limits, error handling)

• It shows your understanding of tradeoffs and architecture

Example : A "habit tracker for remote workers" with user streak logic, local storage fallback, and
timezone awareness > just another to-do app.

Depth > Complexity
A lot of devs chase “hard tech” projects, but a small, well-thought-out app usually beats a
bloated one.

What hiring managers look for :

• Clear data modeling (e.g. normalized schemas, relationships)

• Smart component structure or API layering

• Evidence of decision-making (e.g. “chose X over Y because…”)

Instead of building a full social network, build a messaging system with typing indicators,
delivery states, and real-time updates. That’s focus + depth.

 T e c h f i n d e r P a g e 10 | 26

Ownership and Iteration
A great signal : the project wasn’t dropped at v1. You iterated. You maintained it. You improved
it.

Show this by :

• Adding a changelog or update timeline in your README

• Highlighting improvements you made based on user feedback

• Linking commits or blog posts that walk through your updates

Example : “Added search filtering after realizing users had 20+ items to scroll through.”

Business Logic > Toy Features
Recruiters are less impressed by animations or trendy frameworks than by logic that makes an
app useful in real life.

Look for chances to show :

• Authentication + session handling

• Data validation + error flows

• State management that doesn’t break under pressure

• Simple analytics, dashboards, admin features

Example : Instead of just “upload an image,” build in file size validation, preview, and delete-
with-confirmation.

UI/UX Still Matters (Even for Backend Devs)
No one’s asking for designer-level visuals, but if the UI is janky, confusing, or hard to navigate,
it reflects poorly on you.

Easy wins :

• Clean layout with consistent spacing and fonts

• Clear call-to-action buttons and navigation

• Responsiveness (mobile-friendly is expected)

 T e c h f i n d e r P a g e 11 | 26

• Use of modals, alerts, and error messages

For backend-focused projects, add a small front-end interface or Postman collection to let
people interact with your API.

Summary Table : What Good Projects Do
Trait Bad Portfolio Project Interview-Worthy Project

Problem Solving Just follows a tutorial Solves a clear user or business problem

Code Quality Messy or unclear Well-structured, readable, documented

Thought Process No explanation of decisions Includes tradeoffs, reflections, iterations

Presentation No demo, ugly UI Live link, screenshots, clean UX

Relevance Random stack or unused tech Matches your target job’s tech stack

TL ; DR
You don’t need a thousand projects. You need a few that prove you think, build, and improve
like someone worth hiring. Show that you can identify problems, make choices, and present
your work with clarity. That’s what sets you apart.

 T e c h f i n d e r P a g e 12 | 26

Turn Any Project Into a Standout Portfolio Piece
Not every project starts off impressive. But almost any project, even a to-do app or weather
app, can be framed to show off real skills. The key is context, clarity, and storytelling. This
section gives you the tools to transform what you already have into something interview-
ready.

The “Project Reframe” Method
This is a 3-step process to level up any project using narrative and detail, not by adding
thousands of lines of code.

Step 1 : Define the Problem

Even if it’s small, frame your app as a solution to a specific problem.

Bad framing :

“A weather app that uses an API.”
Better framing :
“A lightweight weather-checking app for digital nomads that works well in low-connectivity
regions and caches recent data locally.”

Step 2 : Explain Key Decisions

You don’t need to explain everything, but you should highlight a few areas where you made
meaningful choices.

Example :

• “I chose Zustand over Redux for simpler global state in a small app.”

• “Used localStorage to provide offline fallback in case of network failure.”

Step 3 : Highlight What You Learned

This is what makes a project feel alive. It shows growth.

Example :

• “Originally used client-side auth but later migrated to Supabase Auth for better
security.”

• “Refactored API calls to reduce redundant re-renders.”

 T e c h f i n d e r P a g e 13 | 26

Key Enhancements That Add Major Credibility
You don’t need to rebuild, just polish. Here are things you can do in a weekend :

Enhancement Why It Matters Time Cost

Add a clean, styled README First impressions = trust 30–60 min

Deploy a live demo Lets others experience your work 30 min

Add screenshots/GIFs Visuals increase engagement & clarity 30 min

Clean up commit history Shows professionalism & focus 1–2 hrs

Write a short blog post Proves you can explain your work 2–4 hrs

Add “Before & After” Notes for Extra Impact
This is especially powerful if you refactored or rebuilt an old project.

Example :

Before After

jQuery DOM manipulation Refactored to React for better component logic

Global variables for state Replaced with Zustand and React Context

No error handling on API calls Now includes retry logic + user-friendly error UI

Mention this briefly in your blog post or README, it shows evolution.

Be Transparent About Scope
Not every project has to be massive. Just be honest and confident in what it is.

Good phrasing :

“A minimal productivity app built in 2 days to explore browser notifications and localStorage
syncing.”

It’s real. It’s human. It works.

 T e c h f i n d e r P a g e 14 | 26

TL ; DR
Even basic projects can shine if you :

• Frame them with purpose

• Explain decisions

• Show that you care about clarity and quality

Don’t build more, build better. One well-framed app > five throwaway ones.

 T e c h f i n d e r P a g e 15 | 26

How to Format a GitHub Repo Like a Pro (With Zero
Clutter)
Your GitHub is one of the first things hiring teams check. Even if your code is solid, a messy,
disorganized repo can instantly weaken their impression. A polished repo, on the other hand,
signals that you’re thoughtful, professional, and ready to work on real teams.

This part shows how to make any project repo look impressive, even if the project itself is small.

Start With a Story-Driven README
Think of your README as your personal billboard. It should explain :

• What the project is

• Why you built it

• What decisions you made

• What you learned

You don’t need flashy visuals, just clarity, intention, and structure.

A good README has :

• A short, one-line description of the project

• The problem it solves (real-world framing)

• Key features (focus on logic or architecture, not animations)

• A link to a live version (if any)

• A section where you share what you learned or changed

• Screenshots if the UI helps tell the story

Tip : Even if it’s a CLI tool or API, show how to use it. Don’t make people guess.

Keep the File Structure Simple & Logical
You’re not being judged on complexity. You’re being judged on whether someone else could
work in your codebase.

 T e c h f i n d e r P a g e 16 | 26

You want :

• A clear folder structure (group logic by type : components, pages, utils, etc.)

• No junk files floating around

• Only include config files that are actually needed

• A placeholder .env.example file if you’re using environment variables

The goal : minimal friction. When someone opens your project, they should know where to look.

Your Commit History Tells a Story, Clean It Up
Hiring teams do check your commit history. What they want to see is :

• That you work incrementally (small, meaningful changes)

• That your messages are clear and consistent

• That you know how to manage a version-controlled project

You don’t need to follow a specific style guide, just avoid chaos like :

• “fix fix fix”

• “don’t know what’s happening lol”

• “final version v3”

Instead, use everyday language that reflects thought :

• “Set up basic routing for login and dashboard”

• “Refactored API layer for better separation of concerns”

If it helps, imagine you’re leaving notes for your future self (or a teammate).

Document Your Iteration (Even Briefly)
One of the most overlooked credibility builders : showing how your project evolved.

This could be :

• A short “progress log” at the bottom of your README

• A list of updates you made over time

 T e c h f i n d e r P a g e 17 | 26

• Even a section called “If I had more time, I would…”

Why it matters : It proves you can maintain a project and reflect on your work, both key signals
of a solid developer.

Clean Up the Repo Surface
Before sharing a repo with hiring teams :

• Delete unused branches (nobody needs to see final-final-friday)

• Remove leftover test files or broken folders

• Make sure your project runs without bugs if they clone it

Basically, treat it like a shared team repo, not a personal playground.

Optional, But Powerful Extras
If you really want to stand out, consider adding :

• A link to a short blog post or “build summary”

• A simple /docs folder where you explain a complex part of the app

• A brief list of tradeoffs you made in the design

These aren’t mandatory, but they make you look like someone who thinks like an engineer, not
just someone who copies code.

TL ; DR - The Human Version
A great GitHub repo doesn’t need fancy code or trendy tools. It needs to be :

• Clear about what the project is and why it matters

• Easy to explore and understand

• Honest about tradeoffs and evolution

• Polished and intentional

If your repo feels like something a team could actually use, or build on, you’re winning.

 T e c h f i n d e r P a g e 18 | 26

Case Studies - Devs Who Nailed It
These case studies show how some developers took ordinary projects and presented them in a
way that caught attention, unlocked job offers, or built trust with hiring managers. You’ll see
what worked, and why it worked.

Case Study 1 : The Job-Winning To-Do App
Dev : A junior frontend dev from Mexico City
Project : A basic React to-do list, but with a twist

What they did right :

• Framed the problem as “building a to-do tool for colorblind users who struggle with
traditional UIs.”

• Highlighted design constraints (WCAG-compliant color schemes, accessible keyboard
nav, no animations).

• Wrote a short blog post : "Designing for People Who Don’t See Color Like Me."

• The README included a small story : they built it for their cousin who has color vision
deficiency.

Why it worked :
They turned a basic app into a story of empathy + accessibility. The hiring manager
remembered the human angle, not the tech stack.

Case Study 2 : The API-Only Portfolio
Dev : A backend dev from Nairobi
Project : An Express.js REST API for managing book inventory

What they did right :

• Created real-world docs (Swagger UI + /docs markdown).

• Used a GitHub project board to show how they organized the API development process.

• Included performance benchmarking notes in the README (“this endpoint handles 2k
requests/sec with Redis caching”).

 T e c h f i n d e r P a g e 19 | 26

• Wrote in the README : “Imagine you’re building a small indie bookstore’s backend, this
is what I’d ship in v1.”

Why it worked :
Even though it wasn’t flashy, this was a clean, production-grade backend. The attention to ops,
docs, and testing made it stand out.

Case Study 3 : The Fake SaaS That Got Real
Dev : A bootcamp grad from Berlin
Project : A fake “AI grammar correction SaaS” built with Next.js + Supabase

What they did right :

• Gave the project a brand : "GrammarGuardian", with a landing page, fake pricing plans,
and auth.

• Wrote out user stories : “This app is for ESL writers who want fast feedback.”

• Included a video demo walking through the app with a voiceover.

• Added a page : “What I’d Build in v2 (if I had a team).”

Why it worked :
This dev sold vision and product thinking, not just technical implementation. It looked like a
real product and communicated roadmap awareness.

Case Study 4 : Mobile App Done Right
Dev : A React Native dev from Bangalore
Project : A calorie-tracking app for Indian diets

What they did right :

• Focused on localized UX : Indian food database, multi-language support, portion-
specific images.

• In the README, explained : “Most calorie apps are built for Western foods. This one
isn't.”

• Linked a short UX case study made in Notion + Figma.

 T e c h f i n d e r P a g e 20 | 26

• Wrote about how they handled data normalization for mixed-unit measurements
(grams + bowls + katoris).

Why it worked :
Hiring managers saw cultural awareness + cross-platform thinking. This wasn’t just an app, it
was a user-centered product demo.

Case Study 5 : The Old School Rebuild
Dev : A self-taught dev from Canada
Project : Rebuilding Craigslist with modern tools (Next.js + Prisma)

What they did right :

• Gave the repo a clear mission : “Make Craigslist usable without looking like it’s from
2002.”

• Tracked refactors in a changelog : auth, image upload, pagination, search.

• Did code before/after screenshots showing their early and late builds.

• Added a short Loom video explaining folder structure + routing logic.

Why it worked :
It was a mature take on a legacy app, and it showed their ability to upgrade old systems
thoughtfully.

Key Takeaways Across All Cases :
Theme What It Looked Like

Framing Real-world context, not just “a to-do app”

Clarity Readable codebases, clear folder structure, solid README

Storytelling Why it was built, who it was for, what changed over time

Professional Signals Blog posts, videos, diagrams, docs, or test coverage

Authenticity Even side projects felt grounded and personal

 T e c h f i n d e r P a g e 21 | 26

TL ; DR
You don’t need to build the next Notion or Stripe to impress people.
You just need to frame your projects like they matter, to someone, somehow.

Make the project feel real.
Make the dev behind it feel thoughtful.
That’s what gets remembered.

The Portfolio That Gets the Callback
Every developer has projects. But not every developer has a portfolio that actually converts
into interviews. The difference ? A callback-worthy portfolio doesn’t just show what you built,
it shows how you think, what you care about, and how you’ll work on a team.

This part breaks down what a high-converting portfolio looks like in 2025, and how to create
one without over-engineering it.

What Hiring Managers Actually Look For
Most recruiters and hiring teams skim portfolios in under 90 seconds. They’re looking for :

• Proof you can ship (not just follow tutorials)

• Communication skills (through README, case studies, or blog)

• Some understanding of product or user thinking

• Clarity of code and project structure (not just flash)

Nobody’s expecting a unicorn full-stack AI architect. They want someone real, capable, and
collaborative.

 T e c h f i n d e r P a g e 22 | 26

The Must-Haves
Here’s what a strong portfolio site or GitHub profile needs to show :

Element Why It Matters

2–3 real projects Shows depth, not just one-offs or tutorial clones

Clear README & framing Signals you can explain your work and think critically

Good repo hygiene Gives confidence you’ll write production-ready code

Project variety Shows flexibility across frontend, backend, APIs, or infra

Context (problem, goals) Helps hiring teams see how you'd fit their product org

How to Choose Your Projects
Not all projects deserve a spot. Choose ones that match these traits :

• You made meaningful decisions. Maybe you chose Supabase over Firebase for a reason.
Talk about that.

• There was a problem to solve. Real-world-ish, even if made up.

• You can explain trade-offs. Even if the project is simple.

• It reflects your interests. Projects you wanted to build always show more energy.

Rule of thumb : if you can’t talk about the project in a 30-second voice note and sound
engaged, it shouldn’t be in your portfolio.

Storytelling > Quantity
You don't need a dozen repos. You need 2–3 that have :

• A clear backstory (why it exists)

• A defined audience or user

• A couple of challenges you overcame

• A short blurb about what you’d do next (shows product mindset)

 T e c h f i n d e r P a g e 23 | 26

Optional but :

• A short Loom or YouTube walkthrough

• A Notion page with design notes or diagrams

• A one-pager PDF resume linked from the README

What to Cut or Hide
Trim the fat. Here's what doesn’t help you :

• Tutorial clones with zero changes

• Repos with bad commit history or broken UI

• 8 “in-progress” apps that are 20% done

• Side projects that are cool tech-wise but pointless to users

Your portfolio is a product, you’re the product. Don’t ship features (repos) that hurt the brand.

Refresh Loop : Keeping It Alive
A good portfolio evolves with you. Set a lightweight refresh loop :

• Every 2 months : swap in newer work

• After each interview : ask what stood out or confused them

• Use analytics (Netlify, Vercel, or even Plausible) to see what people click

Your portfolio is active infrastructure for your job hunt, not a set-it-and-forget-it thing.

TL ; DR - Callback-Worthy Portfolio
To get interviews, your portfolio should :

• Tell stories, not just list features

• Show real decision-making and user thinking

• Be polished and easy to explore

 T e c h f i n d e r P a g e 24 | 26

• Align with the kind of work you want to do

• Feel like something that belongs in a real company

No fluff, no fake polish, just clarity, context, and care.

 T e c h f i n d e r P a g e 25 | 26

Selling Yourself Is a Skill, Learn It Like One
Most devs spend years learning how to code.
But almost none of them are taught how to talk about their work, frame their value, or show up
with confidence.

That’s the gap this guide is here to close.

You’ve seen by now : the goal isn’t to fake anything. It’s not to be a LinkedIn rockstar, a YouTube
guru, or some kind of corporate superhero. It’s to be clear, credible, and easy to remember.

Because in tech, especially now, people don’t just hire skills, they hire signals.

Signals that say :

• "I can work with this person."

• "They care about what they ship."

• "They understand what matters in a team."

Your GitHub, your resume, your portfolio, your interviews, they’re all just different ways to send
that signal.
And if you control the signal, you control the outcome.

So yeah, keep building.
But also ? Learn to sell it. Frame it. Share it. Own it.

That's how devs get hired in 2025.

 T e c h f i n d e r P a g e 26 | 26

Sources & References

Industry Studies & Surveys
1. Stack Overflow Developer Survey 2024 – Stack Overflow Research (Published July 24,

2024) survey.stackoverflow.co+8stackoverflow.blog+8youtube.com+8

2. GitHub Octoverse 2023 – Kyle Daigle & GitHub Staff (Published November 8, 2023 ;
updated July 30, 2024) github.blog+6github.blog+6virtualizationreview.com+6

3. GitHub Octoverse 2024 – GitHub Staff (Published October 29, 2024 ; updated
November 22, 2024) github.blog

Academic & Industry Papers
4. What Skills do IT Companies Look for in New Developers ? – Montandon et al., ArXiv

(Published November 4, 2020) arxiv.org

5. The Building Blocks of Software Work Explain Coding Careers and Language Popularity
– Feng et al., ArXiv (Published April 4, 2025) arxiv.org

6. What Do Developers Discuss in Their Workplace ? - Grech et al., ArXiv (Published
November 11, 2024) arxiv.org

https://stackoverflow.blog/2025/01/01/developers-want-more-more-more-the-2024-results-from-stack-overflow-s-annual-developer-survey/?utm_source=chatgpt.com
https://github.blog/news-insights/research/the-state-of-open-source-and-ai/?utm_source=chatgpt.com
https://github.blog/news-insights/octoverse/octoverse-2024/?utm_source=chatgpt.com
https://arxiv.org/abs/2011.02473?utm_source=chatgpt.com
https://arxiv.org/abs/2504.03581?utm_source=chatgpt.com
https://arxiv.org/abs/2504.03581?utm_source=chatgpt.com

